skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huckabee, Isabela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Using the EXOplanet Transit Interpretation Code (EXOTIC), we reduced 52 sets of images of WASP-104 b, a Hot Jupiter-class exoplanet orbiting WASP-104, in order to obtain an updated mid-transit time (ephemeris) and orbital period for the planet. We performed this reduction on images taken with a 6-inch telescope of the Center for Astrophysics | Harvard & Smithsonian MicroObservatory. Of the reduced light curves, 13 were of sufficient accuracy to be used in updating the ephemerides for WASP-104b, meeting or exceeding the three-sigma standard for determining a significant detection. Our final mid-transit value was 2457805.170208 ± 0.000036 BJD_TBD and the final period value was 1.75540644 ± 0.00000016 days. The true significance of our results is in their derivation from image sets gathered over time by a small, ground-based telescope as part of the Exoplanet Watch citizen science initiative, and their competitive results to an ephemeris generated from data gathered by the TESS telescope. We use these results to further show how such techniques can be employed by amateur astronomers and citizen scientists to maximize the efficacy of larger telescopes by reducing the use of expensive observation time. The work done in the paper was accomplished as part of the first fully online Course-Based Undergraduate Research Experience (CURE) for astronomy majors in the only online Bachelor of Science program in Astronomical and Planetary Sciences. 
    more » « less
  2. Abstract Radiation belt electrons undergo frequent acceleration, transport, and loss processes under various physical mechanisms. One of the most prevalent mechanisms is radial diffusion, caused by the resonant interactions between energetic electrons and ULF waves in the Pc4‐5 band. An indication of this resonant interaction is believed to be the appearance of periodic flux oscillations. In this study, we report long‐lasting, drift‐periodic flux oscillations of relativistic and ultrarelativistic electrons with energies up to ∼7.7 MeV in the outer radiation belt, observed by the Van Allen Probes mission. During this March 2017 event, multi‐MeV electron flux oscillations at the electron drift frequency appeared coincidently with enhanced Pc5 ULF wave activity and lasted for over 10 h in the center of the outer belt. The amplitude of such flux oscillations is well correlated with the radial gradient of electron phase space density (PSD), with almost no oscillation observed near the PSD peak. The temporal evolution of the PSD radial profile also suggests the dominant role of radial diffusion in multi‐MeV electron dynamics during this event. By combining these observations, we conclude that these multi‐MeV electron flux oscillations are caused by the resonant interactions between electrons and broadband Pc5 ULF waves and are an indicator of the ongoing radial diffusion process during this event. They contain essential information of radial diffusion and have the potential to be further used to quantify the radial diffusion effects and aid in a better understanding of this prevailing mechanism. 
    more » « less